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Some History

1932 — Chadwick discovers the neutron
1934 — thermalisation (Fermi)
1936 — scattering theory (Breit, Wigner)

1936 — wave interference (Mitchell, Powers)
1939 — fission /
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1945 — diffraction (Shull, Wollan), reflection, refraction T s Hine o ol
1948 — coherent & incoherent scattering (Shull, Wollan)

1948 — spallation

1949 — structure of AFM (Shull)

1951 — polarized neutrons (Shull & Wollan)
1955 — three axis spectrometer (Brockhouse)
1958 — rotons in helium (Palevsky, Otnes, Larsson)

1962 — Kohn anomalies
1960 — 79 — soft phonons & structural phase transitions
1969 — 79 — scaling and universality

1972 — conformation of polymers

1994 — Nobel Prize for Shull and Brockhouse CIiff Shull (1915 — 2001)



The 1994 Nobel Prize in Physics — Shull & Brockhouse

Neutrons show where the atoms are....
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The Success of Neutron Scattering I1s Rooted In
the Neutron’s Interactions with Matter

Nuclear and magnetic interactions of similar strength

* |sotopic sensitivity (especially D and H) i
* Penetrates sample containment 3T s

 Sensitive to bulk and buried structure

mmmmmmmmmmmm

« Simple interpretation — provides statistical averages, not single instances

 Wavelength similar to inter-atomic spacings

* Energy similar to thermal energies in matter



Neutron Scattering Complements
Other Techniques in Length Scale....
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E / meV

......and Time Scale
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Many Condensed Matter Phenomena lie within the
Ranges of Length & Time Seen by Neutron Scattering
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Early (pre 1970) Neutron Scattering Experiments
Provided Underpinnings of Modern Understanding

Localization of hydrogen in crystal structures
Neel state of antiferromagnets & ferrimagnets
Electronic distributions around atoms (form factors)

Interatomic potentials in metals, semiconductors, rare gases,
lonic crystals etc deduced from phonon dispersion curves

Roton excitations in liquid “He

Structural phase transitions (soft modes, central peaks)



Localization of Hydrogen and Deuterium
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PHYSICAL REVIEW VOLIUME 8%, NUMBER 2 JULY 15, 1951
Neutron Diffraction by Paramagnetic and Antiferromagnetic Substances

C. G BsmiL, W. A Steauser, asn E. 0. WoLtaw
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raditional Magnetic Scattering Experiments

. Quantum fluctuations
* Magnetic structures in quasi-1D

 Magnetic phase diagrams Heisenherg AFM
« Magnetic excitations
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Polarised Neutrons - magnetic structures

Magnetic structure within magneto-electric domains in
anti-centrosymmetric Cr,0,

Brown et al, J Phys: Condensed Matter 10, 663 (1998)
Viewgraph courtesy of Bob Cywinski




FREQUENMCY (10" offd)

FOYSICAL BEEVIEW VOLUME 128, NUMBER 3 HOVEMBER 1, 1942

Crystal Dynamics of Lead. I. Dispersion Curves at 100°K

BE. N, Boocgnovse,® T. Arasgt G, Caowwornf E, K. Raod arp A I B, Woops
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(Received June 4, 196E)

Brockhouse and Woods

Brockhouse’s first 3 axis spectrometer Fra. 1. Schematic driwing of the apparatus,

at NRU reactor in 1959
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Pressure (MPa)

Roton Minimum in Superfluid 4He was

Predicted by Landau

5 T I
4= SOLID
176 K -
3 P T?\
................ . NORMAL
253 . LIQUID
N 1
1 L=
SUPERFLUID _
E Ta
0L | 1 [ L
0 1 217

Temperature (K)

Superfluid “He




Neutron scattering studies of structural

phase transitions at Brookhaven®
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With the Construction of the ILL, Neutron Scattering
Instrumentation became More Specialized

r

;. INIZ Bs10, 534,551
) Hi42

1 Large-scale structure group
W Time-of fightfhigh-resalution group

© Nuclear and fundamental physics group
[ Test and ather beam positions

Photo ESRF/Studio de la Reviré

The issue Is that neutron scattering
IS a signal-limited technique.




Even the ILL doesn’t produce many neutrons!!
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Neutron Scattering Is Really Quite Simple.....
..... at least, in Principle

—>

E, k —-»> —-»> —-»>
— hQ = h(k — ko)

ho =E - E,

v

Momentum = hk; Energy = h’k?/2m_

Measure the number of scattered neutrons as a function of Q and ®

The result is the scattering function S(Q,®) that depends only on the
properties of the sample

All'we need to do Is to prepare a neutron beam with wavevector k+0 and
measure the intensity of neutrons scattered with wavevector k



Instrumental Resolution

« Uncertainties in the neutron
wavelength & direction of travel
Imply that Q and E can only be
defined with a certain precision

 When the box-like resolution
volumes in the figure are convolved,
the overall resolution width is the
guadrature sum of the box sizes.
Small “boxes” give good resolution.

 The total signal in a scattering
experiment is proportional to the product of the “box” sizes

The better the resolution, the lower the count rate



Examples of Specialization of Spectrometers:
Optimizing the Signal for the Science

« Small angle scattering [Q = 4x sind/\; (8Q/Q)2 = (§A/1)2 + (cotd 56)?]
— Small diffraction angles to observe large objects => long (20 m) instrument

— poor monochromatization (3A/A ~ 10%) sufficient to match obtainable angular
resolution (1 cm? pixels on 1 m? detector at 10 m => 66 ~ 1073 at 6 ~ 10-?))

« Back scattering [0=n/2; . =2 d sin 0; /A =cot 0 +...]

— very good energy resolution (~neV) => perfect crystal analyzer at 6 ~ /2

— poor Q resolution => analyzer crystal is very large (several m?)
=iy T AMEF AT




Neutron Scattering Instrumentation is Designed
to Compromise between Intensity & Resolution

1 L2k
e 2
3/2
T

Liouville’s theorem — the (6-dimensional) phase space density of non-
interacting particles cannot be increased by conservative forces

— Brighter sources => colder moderators or non-equilibrium neutron production

Maxwellian distribution of neutron velocities  P(v) ~

We can only increase scattered intensity at a given (Q,E) by increasing
the phase space volume

Design instruments to have good resolution in the direction of (Q,E)
space that is important for the science

Neutron optics & instrumentation is designed to:
— Maintain neutron brightness R
— Provide good resolution in a chosen direction in (Q,E) space
— Simultaneously measure as many resolution elements [i.e. (Q,E) points] as is useful



Neutron Scattering often Provides Definitive
Answers Condensed-Matter Questions

Microstructure in complex (i.e. macromolecular) fluids
Structures of thin film systems
Atomic arrangements in nano-particles

Superconductivity in MgB,

The location of protons in biomolecular crystals



Microstructure of Macromolecular Fluids

* In ‘72 SANS was used to probe the statistics of polymer chains
_ Rg —_ N1/2
— Contrast variation method was used
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Fig. 1. SANS results obtained by Kirste, Kruse & Schelten (1972) for
1-2% deuterated poly(methyl methacrylate) (PMMA) in normal
PMMA (mol. wt of 250000) plotted in Ornstein—Zernike form.
The solid curve represents a Debye function [equation (1) ]. This

was one of the first quantitative demonstrations of Gaussian coil
behavior for bulk polymers.



Contrast Variation is an Important
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A More Difficult Experiment is to Probe
Chain Conformation in Thin Films

baslk conformation
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« independence of 1yz - constant volume concept
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FL Jones, 8 K Kumar, DL Ho, RM Briber, TP Russall,
Nanre, 1999400, 146

Shows a limitation of neutron
scattering for nano-science:
normally need large samples
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Neutron Scattering often Provides Definitive
Answers Condensed-Matter Questions

Microstructure in complex (i.e. macromolecular) fluids
Structures of thin film systems
Atomic arrangements in nano-particles

Superconductivity in MgB,

The location of protons in biomolecular crystals



Structures of Thin Films using Reflectometry

* Neutron reflectometry was invented in the 1980’s to probe interfaces &
layered structures such as polymer films or magnetic layers
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Where are the Chain Ends in an Annealed
Diblock Copolymer Film — A or B?
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Neutron Reflectometry has Revealed Reduced
Water Density at a Hydrophobic Surface
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Interface width, o, depends on the amount of dissolved gases

Dhaval A. Doshi, Erik B. Watkins, Jacob N. Israelachvili, Jaroslaw Majewski, PNAS (2005)



New challenges for magnetic neutron scattering

Exchange bias Magnetic films,
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Vortex State in Thin Films of Magnetic Dots

Shlnjo et al.’ - —Fitted function from dot model
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* GINS experiment with polarized neutrons
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Neutron Scattering often Provides Definitive
Answers Condensed-Matter Questions

Microstructure in complex (i.e. macromolecular) fluids
Structures of thin film systems
Atomic arrangements in nano-particles

Superconductivity in MgB,

The location of protons in biomolecular crystals



Is Short-Range Atomic Order the Same In
Bulk and in Nano-Particles of Gold?
« Traditionally, we measure diffraction patterns and analyze

the Bragg peaks to determine the structure assuming long-
range periodic structure

— Structure in the diffuse scattering between peaks is “background”

LaMnO3 (Pbnm) 3t2-RT (Crushed single X-tal,
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What is a PDF? Look at pair chrelatLon.s_@S a function of separation
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the Patterson) is
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transform of the
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Neutron Scattering often Provides Definitive
Answers Condensed-Matter Questions

Microstructure in complex (i.e. macromolecular) fluids
Structures of thin film systems
Atomic arrangements in nano-particles

Superconductivity in MgB,,

The location of protons in biomolecular crystals



The Neutron Scattering Society of America

Press Release May 1, 2006

Dr. Taner Yildirim

\ IS the recipient of the

2006 Science Prize
of the Neutron Scattering Society of America with the
citation:

“For his innovative coupling of first principles
theory with neutron scattering to solve critical
problems in materials sciences”



MgB, Superconducts at 40K. Why?

* Yildirim did first-principles calculation of phonons in MgB,,
(particulary anharmonicity & electron-phonon interaction) &
compared with neutron scattering
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Crystal structure is layered * Optic & acoustic modes separated

* Red modes frequencies dominated by e-p
interaction

Graphics courtesy of Taner Yildirim



Motions Assoclated with Zone Center Modes

Very anharmonic



The Large Displacements Associated with E,
Cause Large Electron-Phonon Coupling

Because the effective potential for the E,; mode is shallow
and wide, the B atom-motions are large amplitude

This causes significant overlap of electron shells and
significant effects on the band structure close to E¢

The strong e-p interaction causes the “high” T,
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Neutron Scattering often Provides Definitive
Answers Condensed-Matter Questions

Microstructure in complex (i.e. macromolecular) fluids
Structures of thin film systems
Atomic arrangements in nano-particles

Superconductivity in MgB,

The location of protons in biomolecular crystals



How Enzymes Work: shuffling atoms about in
chemical reactions that make cells come alive

Primary structure Chain of amino acids

. T3 ac:limso . 3
_ . eS8
- HC=— NH+ . .
_ N Aspartic acid >~ NH2
secondary structure ., . Hystidine glutamine
Faa ) y 3
A
y )

Shape is key to substrate
binding

W

Substrate

Enzyme

But H atoms are the primary motive force

Viewgraph courtesy of Paul Langan



Visualizing H atoms with neutrons

Scattering density of a phenylalanine residue of myoglobin from a) X-ray
neutron data from perdeuterated protein

Data b) neutron data and c)

Atomic Scattering Lengths

Element Neutrons X-rays Electrons
(1012 cm) (102 cm) (Z2)

'H -0.374 0.28 1 o
H (D) 0.667 0.28 1 °
c 0.665 1.67 s ©

N 0.940 1.97 7 @
0 0.580 2.25 s @

P 0.520 4.23 15 Q

Viewgranh courtesv of Paul Langan



What do we Need to do Better?

« Exploit complementarity of techniques

« (Generate pictures not S(Q,E)
— Couple neutron scattering and advanced computing

— Prototypes exist for powder diffraction, SANS and quasielastic scattering



Integration of Structural Biology Tools Yields Insight into
Enzyme Activation by Calmodulin

Neutron scattering
with isotope labeling -
shapes and positions of
the Myosin Light Chain
Kinase enzyme and
calmodulin in the Ca?*-
calmodulin activated
complex.

Crystallography —
structure of the
catalytic core of the
enzyme and reveals
the location of the
catalytic cleft.

High field NMR with
Isotope labeling — high
resolution solution
structure of calmodulin
complexed with its

Use computational
modeling based on
crystallographic data to
determine molecular

1N R ST shapes under various
RS binding conditions

R o

binding domain from g

the enzyme.

Krueger et al., 1997 Biochemistry 36: 6017.



Pictures & Movies are Today’s Standard
for Nano-Science Research

Today’s Route

Intensity

—

Il l | | 1 1 1 1 1
[ 08 1.0 1.2 14 16 18 20 22 24
d-spacing (A)

We need to provide images
Or movies

Reverse Monte Carlo of CsDSO, fitted to diffraction data (McGreevy)



What do we Need to do Better?

e EXxploit complementarity of techniques
« (Generate pictures not S(Q,E)

e Make better use of the neutrons we have
— Use the best known technology to optimize instrumentation

— Develop better neutron focusing devices



Improved Neutron Optics
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Optical Elements Extend the Reach of
Neutron Nano-Imagers

| '-"'-i"'i"

INI5 —ILL KWS-3 _ Julich

Focusing torroidal mirrors provide higher intensity and allow smaller
values of Q to be reached on SANS & neutron spin echo instruments



What do we Need to do Better?

Exploit complementarity of techniques
Generate pictures & movies not S(Q,E)
Make better use of the neutrons we have

Design and build better neutron nanoscopes
— Extend accessible length and time scales

— Allow nano-length-scales to be reached without loss of neutron intensity that
arises from beam collimation, e.g by using the Neutron Spin Echo method

— Make more use of pump-probe techniques



Extension of the NSE Length-Scale Domain
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High Angular Resolution Neutron Scattering
without Beam Collimation

@ * Thin, magnetized Ni, sFe, , films on silicon wafers
| (labelled 1, 2 & 4) are the principal physical
‘J8 components used for this new method.

= High angular resolution is obtained using Neutron
Spin Echo.
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A 200 nm correlation distance from diffuse reflection with high fidelity. Black and

was achieved for SANS red data include diffuse scattering



What do we Need to do Better?

Exploit complementarity of techniques
Generate pictures & movies not S(Q,E)
Make better use of the neutrons we have
Design and build better neutron nanoscopes

Coordinated research effort on neutron instrumentation

— Vision — a suite of neutron nanoscopes that probe the right length and time
scales in weakly scattering samples

— Possibility exists to optimize the SNS second target station & its instruments
for nanoscience and biology 1f we start soon



END



